Quadrature for implicitly-defined finite element functions on curvilinear polygons
نویسندگان
چکیده
H1-conforming Galerkin methods on polygonal meshes such as VEM, BEM-FEM and Trefftz-FEM employ local finite element functions that are implicitly defined solutions of Poisson problems having polynomial source boundary data. Recently, have been extended to allow for mesh cells curvilinear polygons. Such extensions present new challenges determining suitable quadratures. We describe an approach integrating products these functions, well their gradients, reduces integrals along boundaries. Numerical experiments illustrate the practical performance proposed methods.
منابع مشابه
An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces
We present an adaptive finite element method for approximating solutions to the Laplace-Beltrami equation on surfaces in R3 which may be implicitly represented as level sets of smooth functions. Residual-type a posteriori error bounds which show that the error may be split into a “residual part” and a “geometric part” are established. In addition, implementation issues are discussed and several...
متن کاملNumerical Integration over Implicitly Defined Domains for Higher Order Unfitted Finite Element Methods
The paper studies several approaches to numerical integration over a domain defined implicitly by an indicator function such as the level set function. The integration methods are based on subdivision, moment–fitting, local quasi-parametrization and Monte-Carlo techniques. As an application of these techniques, the paper addresses numerical solution of elliptic PDEs posed on domains and manifol...
متن کاملWeighted Quadrature Rules for Finite Element Methods
We discuss the numerical integration of polynomials times exponential weighting functions arising from multiscale finite element computations. The new rules are more accurate than standard quadratures and are better suited to existing codes than formulas computed by symbolic integration. We test our approach in a multiscale finite element method for the 2D reaction-diffusion equation. Standard ...
متن کاملAn algebraic cubature formula on curvilinear polygons
We implement in Matlab a Gauss-like cubature formula on bivariate domains whose boundary is a piecewise smooth Jordan curve (curvilinear polygons). The key tools are Green’s integral formula, together with the recent software package chebfun to approximate the boundary curve close to machine precision by piecewise Chebyshev interpolation. Several tests are presented, including some comparisons ...
متن کاملHigh-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles
A high-order accurate numerical quadrature algorithm is presented for the evaluation of integrals over curved surfaces and volumes which are defined implicitly via a fixed isosurface of a given function restricted to a given hyperrectangle. By converting the implicitly defined geometry into the graph of an implicitly defined height function, the approach leads to a recursive algorithm on the nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & mathematics with applications
سال: 2022
ISSN: ['0898-1221', '1873-7668']
DOI: https://doi.org/10.1016/j.camwa.2021.12.003